Approche dynamique de la ségrégation: une analyse à partir de données de téléphonie mobile

Lino Galiana (D2E)

En collaboration avec Benjamin Sakarovitch (SSP-lab), François Sémécurbe (SSP-lab) et Zbigniew Smoreda (Orange Labs)

Séminaire du Département des Etudes Economiques

19 février 2019

Introduction

Une photographie de la distribution du revenu (Marseille)

- Données fiscales: concentration spatiale des premiers et derniers déciles à Marseille
- Quelle dynamique infra-journalière ?

Poople beatonging to Dit in tre coll (10K raterences $=$ 1)

Figure 1: Répartition spatiale des ménages du premier décile

Figure 2: Répartition spatiale des ménages du dernier décile

Pourquoi adopter une vision dynamique de la ségrégation ?

- Ségrégation n'est pas un processus figé:
- Dimension temporelle: composition d'un quartier évolue dans le temps
- Résidence ne représente pas nécessairement l'endroit où l'individu passe du temps
- Questions de recherche:
- Comment les mobilités affectent-elles la ségrégation urbaine ?
- La ségrégation résidentielle masque-t-elle une dynamique infra-journalière?
- Dynamique infra-journalière marquée:
- Davis et al. (2017): ségrégation lieux de sortie (restaurants) 50% inférieure ségrégation résidentielle
- Le Roux et al. (2017): ségrégation jour inférieure de 15 à 30% à la ségrégation nocturne

Pourquoi utiliser des données de téléphonie pour étudier la ségrégation?

- Ségrégation principalement étudiée à partir d'indices
- Indice de dissimilarité (Duncan \& Duncan, 1955)

$$
I D=\frac{1}{2} \sum_{j=1}^{J}\left|\frac{w_{j}}{W_{T}}-\frac{n_{j}-w_{j}}{N_{T}-W_{T}}\right|
$$

- Données administratives \Rightarrow ségrégation résidentielle:
- Vision statique de la ségrégation
- Séparation groupes sociaux dans l'espace résidentiel
- Pas d'information sur lieux fréquentés
- Mobilités affectent de manière continue la distribution spatiale du revenu
- Besoin de données géolocalisées à haute-fréquence...
- ... qui doivent être combinées aux données classiques pour caractériser individus

Approche adoptée

- On se propose d'étudier la dynamique infra-journalière:
- 48 points: 24 pour les jours de semaine, 24 pour le weekend
- Implique de construire des indices de ségrégation dépendant du temps
- Construire une série d'indices de dissimilarité pour chaque ville
- Champs: unités urbaines (UU) de Lyon et Marseille
- Filosofi: ménages dont domicile dans les limites UU
- Téléphonie: ménages dont domicile simulé dans limites UU (simulation niveau national puis restriction)

Enjeux

- Champ de recherche nouveau
- Pouvoir d'inférence dépend de la qualité de la combinaison des sources
- Nécessite un fort investissement méthodologique
- Données ne sont pas produites pour une exploitation statistique
- Assurer qualité de la combinaison avec données administratives
- Contribution:
- Combiner données de téléphonie et données traditionnelles
- Proposer une méthodologie pour assurer robustesse de la combinaison
- Décrire évolution ségrégation à une échelle spatiale et temporelle fine

Introduction

Données

Données de téléphonie mobile
Données fiscales

Méthodologie

Résultats
Recalage

Conclusion

Données

Données de téléphonie mobile

Comptes rendus d'appels (CDR)

- Données Orange Septembre 2007, 18.5 millions de carte SIM
- Appels et SMS: 3 milliards d'événements (France métropolitaine)
- Géolocalisation au niveau antenne relais (présence exacte inconnue)
- Utilise pas la dimension des interactions
- Futur travail sur ségrégation sociale

	mean	s.d.	\min	P10	P25	median	P75	P90	max
Average number of daily events by user over the month	6.67	8.71	1	1.60	2.39	4.09	7.90	14.24	6260
Number distincts days phone users appear	19.98	9.16	1	5	13	23	28	30	30
Number of observations: Number of unique phone users:				$3,024,884,663$					
$18,541,440$									

Table 1: Septembre 2007 Call Details Record: summary statistics

CDR: dimension temporelle

- Pas une trace continue
- Individu moyen: détecté 7 fois par jour
- Hétérogénéité forte des comportements
- Utilisation inégale du téléphone selon l'heure

Figure 3: Utilisateurs détectés

Figure 4: Appels (log)

CDR: dimension spatiale

- ≈ 18000 antennes à l'échelle nationale (4000 à Paris)
- Répartition non homogène des antennes (niveau des observations)
- Privilégier analyse urbaine

Figure 5: Répartition nationale des antennes

Figure 6: Aires de couverture estimées

Granularité spatiale

- Littérature ne distingue pas:
- Aire de couverture: passage d'observations au niveau antenne à une aire de présence
- Unité statistique: niveau des agrégats économiques considérés
- Modèle couverture: tesselation de Voronoi
- Chaque point espace relié à l'antenne la plus proche
- En l'absence d'informations sur couverture effective, simplification difficile à éviter
- Cependant, ne doit pas être l'unité statistique d'analyse
- Dépend de la densité locale d'antennes
- Partition espace trop hétérogène

Probabilisation de la présence

- S'abstraire du voronoi en probabilisant la présence au niveau de carreaux de taille fixe
- Sachant que l'appel a été transmis par l'antenne v_{j}, quelle est la probabilité que l'individu soit présent dans un lieu donné c_{i} ?
- Passage par règle de Bayes Détails
- Carreaux de 500 m
- Téléphonie: probabilisation présence \& domicile au carreau
- Filosofi: agrégats locaux sur cette grille

Données fiscales

Principe

- Caractériser utilisateurs de téléphone à partir lieu de vie
- Probabilité d'appartenir au premier/dernier décile en fonction de la distribution du revenu observée dans données fiscales

Données Filosofi

- Données fiscales géolocalisées (x, y)
- Revenu par unité de consommation
- Ségrégation économique sur critère de revenu
- On s'intéresse aux extrêmes de la distribution du revenu (premier et dernier déciles)
- Définition relative du revenu: est-on plus riche/pauvre que les personnes vivant dans la même UU ?
- Approche bimodale: décompose population en classes exclusives
- Premier décile vs reste
- Dernier décile vs reste

Principe de la combinaison

- Fréquence d'apparition d'une sous-population (premier ou dernier décile) dans le carreau
- Agrégation spatiale au niveau du carreau i

$$
\begin{aligned}
& p_{i}^{D 1}=\mathbb{P}\left(y_{x}<\mu^{D 1}\right)=\mathbb{E}\left(\mathbf{1}_{\left\{y_{x}<\mu^{D 1}\right\}}\right)=\frac{1}{n_{i}} \sum_{x=1}^{n_{i}} \mathbf{1}_{\left\{y_{x}<\mu^{D 1}\right\}} \\
& p_{i}^{D 9}=\mathbb{P}\left(y_{x}>\mu^{D 9}\right)=\mathbb{E}\left(\mathbf{1}_{\left\{y_{x}>\mu^{D 9}\right\}}\right)=\frac{1}{n_{i}} \sum_{x=1}^{n_{i}} \mathbf{1}_{\left\{y_{x}>\mu^{D 9}\right\}}
\end{aligned}
$$

- Si $p_{i}>0.1$, sur-représentation de la sous-population dans le carreau
- Cette fréquence observée sert à simuler la sous-population d'appartenance des utilisateurs de téléphone vivant dans c_{i}

Méthodologie

Principe

- Le statut de l'utilisateur de téléphone est simulé à partir de son profil d'appel (seule information individuelle) et caractéristiques de Filosofi
- 3 étapes pour estimer la dynamique de la ségrégation:

1. Estimation du domicile:

- Estimation de probabilités de résidence à partir trace d'appel en soirée: 19h-9h

2. Tirage d'un domicile et d'un revenu

- Simulation du domicile, sachant ces probabilités de domicile
- Simulation du revenu, à partir fréquences calculées dans Filosofi

3. Calcul d'indices de ségrégation

- Dépendent des présences à un instant $t \Rightarrow$ vision dynamique

1. Estimation du domicile

- Domicile probabilisé à partir trace d'appel en soirée (19h-9h)
- L'ensemble de l'espace métropolitain n'est pas résidentiel
- Dans une aire de couverture d'antenne, a priori sur les carreaux où trouver un espace résidentiel est le plus probable
- A priori à partir de la densité du bâti résidentiel dans le carreau (BD Topo)
- Loi a priori est une repondération des probabilités de résidence

$$
\mathbb{P}_{x}\left(c_{i}^{\text {home }} \mid v_{j}\right) \propto \underbrace{\mathbb{P}\left(c_{i}^{\text {home }}\right)}_{\begin{array}{c}
\text { a priori par } \\
\text { BD Topo }
\end{array}} \underbrace{\mathbb{P}_{x}\left(v_{j} \mid c_{i}\right)}_{\substack{\frac{s(v n) c}{s(c)}}}
$$

- Obtient une séquence des probabilités de domicile: $\nu_{x}^{\text {home }}\left(c_{i}\right)$ Dsininition
- Utilisée pour simuler le domicile de x

2. Simulation de domicile et revenu

4 méthodes de simulation domicile pour tester robustesse estimateurs de ségrégation du groupe économique g (premier ou dernier décile)

Méthode	Domicile de x
Méthode principale	Tirage à partir ensemble probabilités de résidence $\nu_{x}^{\text {home }}$
One stage	Choix probabilité maximale de résidence: $c_{i}=$ simulation cell_max_proba
Domicile de x fixé par la probabilité d'être membre $\nu_{x}^{\text {home }}\left(c_{i}\right)$ du groupe g maximale	
cell_min_proba	Domicile de x par la probabilité d'être membre du groupe g minimale

Deux dernières méthodes: évaluer effet sur ségrégation de sur- ou sous-estimer la part du sous-groupe g dans la population

3. Indices de ségrégation

- Construction deux journées typiques: 24 heures de semaine, 24 heures le weekend
- Probabilités individuelles de présence dans le carreau sur la plage temporelle notée $\mathbb{P}_{x}\left(c_{i t}\right)$

```
Détails
```

- Indice de dissimilarité (Duncan \& Duncan, 1955) adapté à la probabilisation de la présence:
- Indice classique:

$$
I D=\frac{1}{2} \sum_{c \in \mathcal{C}}\left|\frac{w_{c}}{W_{T}}-\frac{n_{c}-w_{c}}{N_{T}-W_{T}}\right|
$$

Résultats

Dynamique de la ségrégation

Figure 7:
Marseille

Figure 8:
Lyon

Robustesse: résultats pour Marseille

Resultats pour Lyon

Figure 9: Premier décile

Figure 10: Dernier décile

Comparaison aux niveaux Filosofi

- Ségrégation plus faible que dans Filosofi
- Pas à cause de l'approche par simulation Bootstrap Filosofif
- 2 possibilités:

1. Ne pas interpréter les niveaux mais la dynamique
2. Utilisateurs manquants pendant la nuit: supposer qu'ils sont chez eux

	Marseille		Lyon	
	Low-income	High-income	Low-income	High-income
Dissimilarity index in tax data	0.44	0.45	0.36	0.47
Max. dissimilarity index in phone data Difference	0.34	0.34	0.26	0.28

Recalage

Imputation des utilisateurs non observés pendant la nuit

- Tous les utilisateurs ne sont pas observés à l'instant t

$$
I D_{t}^{g}=\frac{1}{2} \sum_{c \in \mathcal{C}}\left|\frac{\sum_{x \in \mathcal{X}} \mathbb{P}_{x}\left(c_{i t}\right) \mathbf{1}_{x \in g}}{\sum_{\substack{\text { Number people of income group } g \\ \text { that are observed at time } t}}^{\mathbf{1}_{x \in g}}}-\frac{\sum_{x \in \mathcal{X}} \mathbb{P}_{x}\left(c_{i t}\right) \mathbf{1}_{x \notin g}}{\sum_{\substack{\text { Number people not in income group } g \\ \text { that are observed at time } t}}^{\sum_{x \in \mathcal{X}} \mathbf{1}_{x \notin g}}}\right|
$$

- Quel effet sur les indices ?
- Imputer individus au domicile avec proba 1 lorsqu'ils sont manquants:
- Imputation la nuit (19h-09h)

Imputation des utilisateurs non observés pendant la nuit

Figure 11:
Premier décile

Figure 12:
Dernier
décile

Imputation des utilisateurs non observés pendant la nuit

- On retrouve niveau de ségrégation cohérent avec données fiscales
- Comment traiter les heures de la journée ?

Conclusion

Conclusion

- Proposition d'une méthode pour combiner données de téléphonie et données administratives
- Premiers résultats à confirmer:
- Ségrégation moins marquée pendant la journée que le suggère la ségrégation résidentielle (cohérent avec Le Roux et al., 2017)
- Pas de différence marquée dans la dynamique entre premier et dernier déciles
- Recalage permet d'avoir un niveau de ségrégation cohérent avec Filosofi
- Suite du travail:
- Investissement méthodologique à approfondir
- Généraliser à d'autres villes
- Comprendre la dynamique de la ségrégation à une échelle infra-urbaine Exemple

I

Appendix

Annexe méthodologique

Présence au carreau

- La probabilité qu'un événement mesuré dans l'antenne v_{j} à l'instant t ait lieu dans le carreau c_{i} est égal à

$$
p_{i}^{j}:=\mathbb{P}\left(c_{i} \mid v_{j}\right)=\frac{\mathbb{P}\left(c_{i} \cap v_{j}\right)}{\mathbb{P}\left(v_{j}\right)}=\frac{\mathcal{S}\left(c_{i} \cap v_{j}\right)}{\mathcal{S}\left(v_{j}\right)}
$$

- La probabilité d'être présent à l'instant t dans le carreau c_{i} (on note cette double condition $c_{i t}$) est la recollection des probabilités conditionnelles

$$
\begin{equation*}
\forall c_{i t} \in \mathcal{C}, \quad \mathbb{P}_{x}\left(c_{i t}\right)=\sum_{v_{j t} \in \mathcal{V}} \mathbb{P}\left(c_{i t} \mid v_{j t}\right) \mathbb{P}_{x}\left(v_{j t}\right) \tag{1}
\end{equation*}
$$

avec \mathcal{V} ensemble des antennes/voronois et \mathcal{C} cellules de 500 m .

Estimation du domicile

- Détection domicile uniquement: événement au niveau du voronoi repondéré selon la formule suivante

$$
\mathbb{P}_{x}\left(c_{i}^{\text {home }} \mid v_{j}\right) \propto \underbrace{\mathbb{P}\left(c_{i}^{\text {ratio surfaces }}\right)}_{\substack{\text { a priori par } \\ \text { BD Topo }}} \underbrace{\mathbb{P}_{x}\left(v_{j} \mid c_{i}\right)}_{\substack{\frac{s(n \cap c)}{s(c)}}}
$$

- Domicile estimé de l'individu x au niveau du carreau c_{i} en sommant tous les événements mesurés au niveau des voronoi v_{j} :

$$
\nu_{x}^{\text {home }}\left(c_{i}\right)=\frac{1}{\alpha_{x}} \sum_{v \in \mathcal{V}} \mathbb{P}_{x}\left(c_{i}^{\text {home }} \mid v_{j}\right) \mathbb{P}\left(v_{j}\right)
$$

- avec α_{x} un terme de normalisation pour avoir $\sum_{c_{i}} \nu_{x}^{\text {home }}\left(c_{i}\right)=1$

Annexe résultats

Robustesse: Lyon

Figure 13:
Premier décile

Effet simulation sur ségrégation: bootstrap données fiscales

	Dissimilarity Index			
	Observed value	Bootstrap design		
		(1)	(2)	(3)
Low-income	0.4441	Marseille		
		0.4439	0.446	0.457
		[0.4422;0.4455]	[0.4429;0.4502]	[0.4515;0.4611]
High-income	0.4536	0.4088	0.415	0.4226
		[0.4070;0.4107]	[0.4117;0.4186]	[0.4187;0.4269]
Low-income	0.3584	Lyon		
		0.359	0.3626	0.352
		[0.3572;0.3606]	[0.3602;0.3654]	[0.3483;0.3561]
High-income	0.4691	[0.3969	0.4021	0.4028
		[0.3944;0.3987]	[0.3986;0.4059]	[0.3985;0.4067]

Notes:

Median dissimilarity index over 100 iterations is reported. 95% confidence intervals are reported into brackets
(1): Bootstrap inside each cell with uniform weights (probability being chosen: $1 / n_{i}$)
(2): Bootstrap inside each cell with uniform weights for $1 / 3$ population (probability being chosen: $\frac{1}{3 n_{i}}$)
(3): Bootstrap inside each cell with uniform weights for population from mobile phone data (probability being chosen: $\left.\frac{1}{n_{\text {phone }}}\right)$.

Cartographie de la ségrégation à 15 heures

Distribution du dernier décile à 15 h

Cartographie de la ségrégation à 22 heures

Distribution du dernier décile à $22 h$

